
Parallel Programming with MATLAB

John Burkardt and Gene Cliff

October 14, 2013

Contents

1 THE COMBINATION LOCK 3
1.1 Introduction . 3
1.2 The Combination Lock Problem 4
1.3 Opening the Bicycle Lock Sequentially 5
1.4 Opening the Bicycle Lock in Parallel 5
1.5 Discussion . 7

2 QUADRATURE WITH PARFOR 9
2.1 Introduction . 9
2.2 The Sequential Quadrature Problem 10
2.3 Quadrature Using PARFOR 11
2.4 Comparing Sequential and Parallel Rates 13

3 KNOWING WHEN TO STOP 16
3.1 Introduction . 16
3.2 An Optimal Strategy . 18
3.3 A Sequential Simulation . 18
3.4 A Parallel Simulation Using parfor 20

4 THE PRIME SIEVE 22
4.1 Introduction . 22
4.2 The Sieve of Eratosthenes . 23
4.3 The Work Grows With N . 25
4.4 Counting Primes in Parallel 26

5 HAILSTONE WITH PARFOR 29
5.1 Introduction . 29
5.2 Computing the Length and Height 30

1

6 THE MOLECULAR DYNAMICS PROBLEM 32
6.1 Introduction . 33
6.2 The Calculation . 33
6.3 Estimating the Work . 35
6.4 Profiling the Sequential Code 36
6.5 Performance of the Parallel Code 40

7 TIME, WORK, RATE 42
7.1 Introduction . 42
7.2 Absolute Computational Work 43
7.3 Wallclock and Processor Times 44
7.4 Measuring Time . 45
7.5 A Test Drive on Your Computer 46
7.6 Relative Computational Work 47

8 RULES OF THE (PARFOR) ROAD 53
8.1 Introduction . 53
8.2 The basics . 54
8.3 More on the classification . 56

8.3.1 sliced variables . 56
8.3.2 broadcast variables . 57
8.3.3 reduction variables . 57
8.3.4 temporary variables . 58

8.4 Efficiency . 58

2

Chapter 1

THE COMBINATION LOCK

Figure 1.1: The locking rings (left) and the combination lock (right)

1.1 Introduction

A determined, methodical, and careful person can open a combination lock,
given enough time, simply by trying every possible combination in order. If
someone offers to help, and there’s a copy of the lock with the same unknown
combination, then we can expect the task to be accomplished in half the time,
and if more helpers are available, the better.

We can formulate the combination lock problem on the computer, and
simulate the procedure of a person trying to determine the combination.

3

What may be surprising is that, if more than one processor is available to
the computer, it is again possible to accomplish the task more quickly, by
sharing the work among the available “helpers”.

1.2 The Combination Lock Problem

A common class of combination locks involves a set of identical numbered di-
als, each of which can be turned independently to display one of the numbers.
The lock is manufactured in such a way that it will only open if each dial has
been set to the correct numeric setting, called the “combination”. A typical
lock used for a bicycle or suitcase might have three dials, each labeled with
the digits 0 through 9. Such a lock obviously has exactly 10×10×10 = 1, 000
possible combinations.

Since we will be interested in variations of this problem, let’s reserve m
to represent the number of dials, and n be the number of digits or symbols
or settings to choose from on each dial. Using this notation, we may con-
veniently refer to a combination lock by specifying the two values (m, n), in
that order. The bicycle lock is thus a (3, 10) lock.

The number of combinations in an (m, n) lock is nm, which means that,
simply by adding a few more dials or symbols, we can quickly be looking at
millions or billions of combinations. The combination lock thus has a feature
common to many computational problems that can be described by a few
parameters: for small parameter values, the problem is easily solved, but
with a modest increase, the problem quickly becomes extremely difficult.

If we wish to pose an example of the combination lock problem, we must
include a choice for the combination. We can designate this by c. The
quantity c must be a vector of length m, containing the correct settings
for the dials. Once we have selected the lock parameters (m, n) and the
combination c, we have described a problem.

A locksmith could build this lock, and allow contestants to try to open
it. We, instead, will “build” a simulation of the lock on the computer, and
follow that up by simulating the procedure by which someone might try to
determine the combination.

4

1.3 Opening the Bicycle Lock Sequentially

We’ll start by determining the combination of a (3,10) bicycle lock. Since
there are just 10 symbols on the dials, we can think of represent them as the
digits 0 through 9. By concatenating the three symbols of the combination,
we can think of it as simply a number between 0 and 999. This point of view
makes it easy to come up with a solution procedure, (just start counting!).
It also makes it possible to pause at any time, and restart later, as long as
we know the last combination we tried. We will use that fact shortly.

A simple MATLAB procedure for the bicycle lock problem might be:

1 %% combina t ion lock .m
2 %
3 % Set the combination C.
4 %
5 rng (’ s h u f f l e ’) ;
6 c = randi ([0 , 999] , 1 , 1) ;
7 %
8 % Generate every number A between 0 and 999 ,
9 % and then see i f i t i s the combination C.

10 %
11 for a = 0 : 999
12
13 i f (a == c)
14 fpr intf (1 , ’ \n ’) ;
15 fpr intf (1 , ’ The combination i s %d !\n ’ , a) ;
16 break
17 end
18
19 end

Given how simple the solution is, it might hardly seem that this problem
was worth coding up. But before we go on, let us note that the reason we
were able to solve the problem was that we came up with a representation for
the combinations, and a procedure for generating each combination exactly
once.

1.4 Opening the Bicycle Lock in Parallel

Because we were able to represent the possible combinations as the integers
between 0 and 999, it should be clear how the solution procedure could be

5

speeded up if we had one or more workers to help us: simply divide up
the range [0,999] among the available workers so that each combination is
checked by somebody. Perhaps the worker who finds the answer should also
announce this fact so that the others can stop looking.

Since this problem will run very quickly on a single processor, it might
not seem worth using parallel computing. Nonetheless, it’s so easy to request
parallel processing that we might as well introduce it for this example. We
have to replace the keyword for by parfor, if a MATLAB loop is appropriate
for parallel processing. The parfor statement indicates that the work of the
loop, (the individual iterations) can be divided up among the set of available
processors.

Our sequential code includes a break statement. The rules for using the
parfor statement require that the loop not involve any break statements.
Fortunately, we can easily modify our program to omit the break; as long
as we print the combination when we find it, we will get the information we
need.

Thus, the text of a parallel version of our algorithm might be:

1 %% comb ina t i on l o c k pa r f o r .m
2 %
3 % Set the combination C.
4 %
5 rng (’ s h u f f l e ’) ;
6 c = randi ([0 , 999] , 1 , 1) ;
7 %
8 % Generate every number A between 0 and 999 ,
9 % and then see i f i t i s the combination C.

10 %
11 pa r f o r a = 0 : 999
12
13 i f (a == c)
14 fpr intf (1 , ’ \n ’) ;
15 fpr intf (1 , ’ The combination i s %d !\n ’ , a) ;
16 end
17
18 end

The revised program can still be executed by MATLAB, in the usual
way; however, the “usual way” involves running sequentially. So once we’ve
created a parallel program, we have to issue some commands to MATLAB
to request that the program actually be run using multiple processors. As-
suming our desktop machine has the Parallel Computing Toolbox installed,

6

let’s run the algorithm with 4 processors:

1 %% Run the par fo r s c r i p t on 4 l o c a l workers
2
3 matlabpool open l o c a l 4
4
5 c omb i n a t i o n l o c k pa r a l l e l
6
7 matlabpool close

The matlabpool command directs MATLAB to set up a pool of 4 work-
ers; the script begins executing with the client copy of MATLAB, but when
the parfor statement is reached, these workers are called, and each is as-
signed a segment of the loop iteration range. One of the workers finds the
combination and prints it; but each worker continues until it has checked ev-
ery value in its range. Once all the loop iterations are completed, the workers
“retire”, and the client resumes control of the calculation.

1.5 Discussion

Our simple example asks us to find the combination, and we simply pick a
number at random as our goal, which might make the whole search seem
somewhat contrived. But in fact, many real problems share this structure,
with the exception that now the answer isn’t known in advance. For example,
instead of searching for a 3 digit integer a that equals c, we might be searching
for a number a such that the function f(x) = x5 − 123x4 + 2x3 − 246x2 +
3x − 369 is equal to zero. There is just one value a between 0 and 999 for
which this is true, and we can search for it in the same way, but now the
answer is no longer obvious.

In this example, it’s easy to believe that we can replace a sequential
calculation by one in which multiple workers divide up the job and complete
it correctly, because the task was so simple. There are no complicated arrays
to be read or written, no worker has to consider what any other worker
has done. But surely most problems are much more complicated than this
one; it’s natural to worry about a complicated numerical calculation can
similarly be divided up among cooperating workers. We will address such
issues shortly.

Another issue is that while we have been successful in running the pro-
gram in parallel, our real goal is to get answers faster. For this tiny example,

7

it’s not really clear that we have achieved any such benefit. In fact, if you ac-
tually run the parallel code, you will notice that the matlabpool command
takes a perceptible time to complete, perhaps longer than the calculation it-
self. Our main purpose in this example was simply to get something running
in parallel, the simpler the better - however, it is important not to imagine
that a parallel program is better, or guaranteed to be faster, than a sequen-
tial version. In fact, we will see that it is always important, when using
parallel programming, to check that parallelism is helpful for the number of
processors and problem sizes that we are likely to consider.

8

Chapter 2

QUADRATURE WITH
PARFOR

Figure 2.1: Sequential and Parallel Integral Estimates by Quadrature

2.1 Introduction

The integral of a function f(x) over the interval [a, b] can be interpreted as
the area between the x-axis and the curve y = f(x). If we can’t see a way to
determine the exact value of the integral through calculus, we can think of
approximating the integral by considering the area. This approach is called
quadrature. It makes an estimate of the integral by evaluating the function
at many points.

9

Quadrature is an ideal application for parallel programming, because it
involves a large number of simple, independent tasks whose properties can
be defined in advance. Notice however, that the quadrature problem raises
a new issue that did not arise before, namely communication. In the com-
bination lock problem, there was never any interaction between the workers,
and the client simply assigned tasks to the workers and never asked for a
result; instead, a worker that found a combination simply printed it directly
to the user. For the quadrature problem, the workers still won’t need to
communicate with each other, but once each worker has computed its partial
estimate, it must communicate this information to the client, so that it can
be gathered into a single final estimate.

This is a logical feature of the computation, and we shall want to know
that MATLAB is able to handle it properly.

2.2 The Sequential Quadrature Problem

We suppose that we are given a function f(x), and an interval [a, b]. The

integral is symbolized by I(f, [a, b]) =
∫ b

a
f(x)dx. We suppose that it is not

possible to determine the exact value of I(f, [a, b]), and so instead we plan
to approximate the value by a quadrature formula, which we will write as
Q(f, [a, b]).

One of the simplest quadrature formulas is the midpoint rule:

QM(f, [a, b]) = (b− a) · f(
a + b

2
)

While the accuracy of this rule is low, improved results can be obtained
by using the composite midpoint rule, which involves dividing the interval
[a, b] into n equal subintervals, applying the midpoint rule to each, and then
summing the result:

QCM(f, [a, b], n) =
n∑
i=1

(bi − ai) · f(
ai + bi

2
)

=
b− a

n
·

n∑
i=0

f(
(n− i)a + ib

n
)

A simple MATLAB procedure for the quadrature problem might be:

10

1 function q = quad sequent i a l (a , b , n , f)
2 %% quad s e qu en t i a l .m
3 q = 0 . 0 ;
4 for i = 1 : n
5 a i = ((n − i + 1) ∗ a + (i − 1) ∗ b) / n ;
6 b i = ((n − i) ∗ a + i ∗ b) / n ;
7 x i = (a i + bi) / 2 . 0 ;
8 q = q + f (x i) ;
9 end

10 q = q ∗ (b − a) / n ;
11
12 return
13 end

Our computation is written as a MATLAB M-file; we invoke it by setting
the values of the input. Here, our function to integrate will be f(x) =
(4x+1)·(11−4x)/8, and for convenience, we will use MATLAB’s anonymous
function facility to define the function f on a single command line:

1 %% qu a d s e q u e n t i a l c a l l .m
2 a = 0 . 0 ;
3 b = 2 . 0 ;
4 n = 21 ;
5 f = @(x) (4∗x+1)∗(11−4∗x) /8 ;
6 q = quad sequent i a l (a , b , n , f) ;
7 fpr intf (1 , ’ The i n t e g r a l e s t imate i s %f \n ’ , q) ;

2.3 Quadrature Using PARFOR

We can make a parallel version of the quadrature computation simply by
replacing for with parfor.

1 function q = quad par for (a , b , n , f)
2 %% quad par for .m
3 q = 0 . 0 ;
4 pa r f o r i = 1 : n
5 a i = ((n − i + 1) ∗ a + (i − 1) ∗ b) / n ;
6 b i = ((n − i) ∗ a + i ∗ b) / n ;
7 x i = (a i + bi) / 2 . 0 ;
8 q = q + f (x i) ;
9 end

10 q = q ∗ (b − a) / n ;
11

11

12 return
13 end

Before we go on, though, we need to try to make a mental model of
how the variables in the parallel program are accessed by the workers while
executing the loop. It’s easy to imagine that the variables a, b, and n, as
well as the expression for f are “owned” by the client copy of MATLAB, and
that the workers either get a copy of these values, or can refer to them at
any time (and this is correct).

However, we can’t really think about the variable q in the same way. The
client initializes q to zero, but doesn’t execute the statements inside the loop
which update its value. So it’s the workers that have to update the value of q
with the new information. If we suppose there’s only one copy of q available,
and we carefully insist that only one worker at a time can update it, then
we will surely have a considerable amount of undesirable delay while workers
wait for their turn to apply their update. On the other hand, if we simply
allow any worker at any time to read or write the single copy of q, then we
are liable to get erroneous results. Two workers could try to update at the
same time, and only one of the updates would be correctly stored.

Luckily, MATLAB is automatically able to recognize what is going on
with the variable q, and essentially, as the loop starts, it creates for each
worker a zeroed-out private variable called q, which that worker alone is free
to modify. On the completion of the loop, MATLAB quietly gathers the
multiple copies of q, and adds them to the value of q that was stored in the
client before the parallel loop began. The variable q is an example of what’s
called a reduction variable.

Notice that the variable x has a simpler behavior. It is simply a temporary
variable, which is only used inside the loop. We might imagine that each
worker makes a separate private copy of x to be used during its iterations.
The variable x is just a temporary convenience, and once we exit the loop,
its value is of no importance. Thus, even though the sequential code uses a
single copy of x, but the parallel code uses multiple versions of this variable,
we are right in assuming that this is not going to cause any problems.

To invoke the code, once again we have to use the matlabpool command
to request the help of the workers:

1 %% quad p a r f o r c a l l .m
2 a = 0 . 0 ;
3 b = 2 . 0 ;

12

4 n = 21 ;
5 workers = 4 ;
6 f = @(x) (4∗x+1)∗(11−4∗x) /8 ;
7 matlabpool (’ open ’ , ’ l o c a l ’ , workers) ;
8 q = quad par for (a , b , n , f) ;
9 matlabpool close

10 fpr intf (1 , ’ The i n t e g r a l e s t imate i s %f \n ’ , q) ;

2.4 Comparing Sequential and Parallel Rates

When we try the parallel program out on our sample problem, for some
small problem sizes, the results don’t look very good! We run the sequential
code (“0 workers”) versus the parallel code with 1, 2 or 4 workers, and for n
ranging from 1 to 210. The parallel timings are consistently worse than the
sequential code and even seem to get worse as we add more workers!

However, it’s important to be cautious here. Note that even the sequential
timings are not showing a pattern of doubling as the problem size doubles.
This suggests that the computational work in the problem is insignificant
compared to the other things that MATLAB is doing for us. We have to
remember that the benefits of parallelism come for problems with a “sig-
nificant” amount of work. Certainly our quadrature function f is trivial to
evaluate, and perhaps a few hundred evaluation points of an easy function
don’t constitute enough work.

N/W 0 1 2 4
1 0.2923 0.4164 0.2306 0.2436
2 0.0073 0.0294 0.0270 0.2131
4 0.0008 0.0234 0.0223 0.2150
8 0.0008 0.0205 0.0235 0.0293

16 0.0008 0.0263 0.0263 0.0391
32 0.0008 0.0306 0.0395 0.0435
64 0.0008 0.0207 0.0326 0.0489

128 0.0008 0.0201 0.0303 0.0410
256 0.0009 0.0201 0.0332 0.0362
512 0.0010 0.0213 0.0258 0.0320

1024 0.0012 0.0204 0.0250 0.0342

We still assume that there are some versions of this problem for which
parallelism provides a benefit. How do we look for them? We could look

13

at cases where the function is more expensive to evaluate, but instead, let’s
stick with our current function, gradually increase the value of n, and see if
there’s at least some range over which the parallel code runs faster.

Figure 2.2: Rates for 1, 2, 4 workers, relative to sequential code

Our comparisons will use n = 1, 2, 4, ..., 223 points, and we will try
the sequential code (“0 workers”), as well as parallel runs with 1, 2, and 4
workers. We suspect that the 1 worker code will never run faster than the
sequential code, but we hope that there will be a range where the 2 and 4
worker codes are about twice and four times as fast as the sequential code.

To make this trend easy to spot, we’ll plot the computational rates relative
to the sequential code. That means that, for every problem size, the rate of
the sequential code will be plotted as 1, showing up as a horizontal line. If a
parallel code is faster for that problem size, it will appear above the line.

From the plot, we get some reassurance and understanding. The sequen-
tial code is represented by the blue line. The 1 worker code is red, and we
see that it is never better than the sequential code, and at the highest values

14

of n seems to be leveling off in rate. The 2 and 4 worker codes first beat
the sequential code at n = 216, and thereafter, their rates seem to be rising
towards their theoretical limits of 2 and 4.

We can see that if we had only studied values of n up to 215, we would
never have seen a benefit from parallelism. The fact that we have to wait so
long to see a benefit is also because the integrand is so simple to evaluate.
This suggests that the small, simple problems we like to use for benchmarking
will often lead us to incorrect conclusions. To understand whether parallelism
will benefit your problem, it’s really important to examine a realistic range
of problem sizes, parameters, and difficulties.

15

Chapter 3

KNOWING WHEN TO STOP

Figure 3.1: To find Ms Right in 100 candidates, try 37 dates, then get serious!

3.1 Introduction

A mysterious stranger has arrived in town with a deck of cards, and a wag-
onload of gold. He announces that he has decided to give away his fortune,
by letting each person in the town play a game. He has a deck of ten blank
cards. On the face of each card, he writes a number representing an amount

16

in gold coins, and then turns the cards face down. Now he turns over the first
card. “Is this the card you want?” he asks, and the player can either accept
it, winning the corresponding amount, or reject it. If the player rejects that
card, the next one is turned over, and so on, until the player accepts a card,
or reaches the last card which is then, by default, the player’s winnings.

A greedy player will naturally wish to be lucky enough to choose the very
highest card. If the player decides in advance to choose a card at random,
the seventh card, perhaps, then this strategy would have a 1/10 chance of
correctly selecting the highest card. But somehow, that doesn’t seem the
best strategy. After all, that’s the same as always picking the first card. But
it’s hard to resist the feeling that you really ought to turn over some cards
before making a choice. Except that the price of seeing the next card is
giving up the one you have.

The game would be easy if it was known in advance what numbers ap-
peared on the cards, so we will suppose the range is not known. Even if
we don’t know the range, particular values such as “1” or “2” would almost
certainly not be the maximum; so to make sure the puzzle is hard, we will
suppose that the card values are chosen in such a way that every card could
be the maximum. Here is a sequence of numbers chosen in such a way.

512 256 896 320 928 80 680 116 118 571

Given 10 cards, we start with 29, and then randomly add or subtract 28 to
get the next card, then randomly add or subtract 28 and 27 to get the next
card, and so on. This guarantees that every card is equally likely to be the
maximum, and that the location of the maximum can never be determined
from the observed values of the preceding cards.

This is an example of what is called an optimal stopping problem. Martin
Gardner described this problem as “The Game of Googol”. A variation,
called “The secretary problem”, involves an employer seeking a secretary,
who has scheduled interviews with 50 applicants, and will either say “Next!”
or “You’re hired, send the rest home!” at the end of each interview. The
problem has also been posed as a person wanting to get married; a dating
service has provided the names of 100 candidates, and the person, while
wishing to marry the best of the candidates, must date each in turn and
either accept that person, or permanently reject them and request the next
candidate. Here, the assumption is made, of course, that the candidate is
willing to accept the marriage proposal, and is not also simultaneously dating
a number of people looking for the best!

17

3.2 An Optimal Strategy

Surprisingly, a strategy can be devised which, on average, will select the
highest card, the best secretary, or the ideal mate about 37% of the time.
Moreover, this is true pretty much independent of n, the number of choices
available. The strategy is in two parts:

• examine, but reject, the first k − 1 items;

• examine items k through n, accepting the very first one whose value is
greater than the first k − 1.

For a given value of n, we can work out the probability that a given k will
product the optimal value, and in fact, we can write a MATLAB function to
do this for us:

1 function p = h igh ca rd exac t (n , k)
2 %% h i gh ca r d e xa c t .m
3 p = (1 + (k − 1) ∗ sum (1 . / (k : n−1))) / n ;

For our mysterious stranger’s game using a 10 card deck, the results are:

k 1 2 3 4 5 6 7 8 9 10
p(k) 0.100 0.283 0.366 0.399 0.398 0.373 0.327 0.265 0.189 0.100

The optimal value of k for this problem is clearly 4. But, except for very
small values of n, the optimal value can be well approximated by k∗ ≈ n

e
,

which here would give us k∗ = 3.6788, and in general, the chances that this
strategy will succeed are p(k∗) = 1/3 = 0.3679.

3.3 A Sequential Simulation

Let us assume that we know about the high card game, and wish to analyze
it computationally. We choose a deck size n, and then want to see how the
value of the skipping strategy for various skip values k.

When a human is playing the game, it’s important to try to disguise the
range of values. However, we’ll assume the computer makes no conclusions
from the actual values displayed, so our deck of n cards can simply be modeled
as a random permutation of the integers 1 through n.

So our procedure will be, for each skip value k from 1 to n, to simulate t
realizations of the game using the given skip strategy. If h is the number of

18

Figure 3.2: The exact probability of winning high card with a deck of 100

times we picked the high card (which here will simply be the one labeled n),
then we estimate the probability of winning with skip k as

p(k) ≈ h

t

Given values of n and k, a function to estimate p could be:

1 function p = h igh ca rd e s t imated (n , k , t)
2 %% hi gh ca rd e s t ima t ed .m
3 h = 0 ;
4 for j = 1 : t
5 cards = randperm (n) ;
6 margin = max (cards (1 : k−1)) ;
7 for i = k : n
8 i f (margin < cards (i))
9 i f (cards (i) == n)

10 h = h + 1 ;
11 end
12 break ;
13 end
14 end
15 end
16 p = h / t ;

19

Of course, while the function is the key to the calculation, it only com-
putes the estimated probability for a particular value of k. To judge what
the optimal value of k is, or to make a plot of the estimated probabilities, we
would need to call prob estimat(n,k,t) for each value of k from 1 to n.

3.4 A Parallel Simulation Using parfor

If we wish to compute a table p(1 : n) of the probability estimates for each
skipping value, then we only need to add a simple loop to generate each k
and call the function. Computing this data in parallel is therefore also quite
easy, since the details are hidden in the function; moreover, the fact that
the function depends only on the fixed numbers n and t and the loop index
k means it is almost certain that the computation is suitable for parallel
treatment.

Since the loop is so short, we’ll include the calls that summon and dismiss
the workers, and suggest how the result vector can be displayed:

1 %% h i g h c a r d e s t ima t e d c a l l .m
2 n = 100 ;
3 t = 1000 ;
4 matlabpool open l o c a l 4
5
6 pa r f o r k = 1 : n
7 p(k) = h igh ca rd e s t imated (n , k , t) ;
8 end
9

10 matlabpool close
11
12 plot (1 : n , p , ’b− ’) ;
13 t i t l e (’ Estimated winning p r o b a b i l i t i e s f o r 100 card deck . ’)

An plot of the results for the 100 card deck, estimated by 1,000 trials for
each skip value k, captures the general shape of the curve computed from
the exact formula, although it remains surprisingly irregular in detail.

As far as parallelism goes, however, there are several points to consider.
A new feature of this example is that the parfor loop stores data into an

array whose results will be needed after the loop is completed. This array
is accessed by the loop parameter in the simplest way. Loops controlled by
parfor impose some strict requirements on the ways in which arrays can be
used on the left or right hand sides of the statements they control. Luckily,

20

Figure 3.3: The estimated probabilities, with a deck of 100, and 1,000 trials.

using the loop index to access a vector is always legal!
A second thing to consider is that we parallelized on the skipping number

k. In fact, there really are two loops surrounding the calculation; the other
loop involves the number of trials. The fact that we buried the calculation
inside a function obscures this detail, which might have led us to consider
reordering the loops, especially if n was small relative to the number of
processors, or if we actually only wanted to check a few values of k, not the
entire range possible.

Finally, note that the function prob estimat() invokes the random number
generator. In a sequential calculation, we should be comfortable with the idea
that there is a single generator with an internal state, and that each call to
this generator both produces a random value and advances the state. What
happens in a parallel calculation? Does each worker invoke a separate random
number generator? Does each random number generator begin in the same
state? For some applications, this would cause unacceptable correlations
instead of the desired random behavior. At the moment, we will only raise
these issues, to encourage you to see that moving from a sequential to a
parallel system means that sometimes you are probably only assuming that
things work the way they should!

21

Chapter 4

THE PRIME SIEVE

Figure 4.1: Primes (red columns) are scattered among the integers

4.1 Introduction

The Greeks were fascinated by the geometric properties of numbers; 1, 3,
6, 10 and so on were triangular numbers, just as 1, 4, 9 and 16 are the
more familiar squares. They knew a number could be factored whenever

22

that many unit squares could be arranged into a rectangle. Some numbers
wouldn’t cooperate, though, and a number p was termed prime if the only
rectangle that could be formed from p unit squares was the rectangle that
was 1 unit by p units; which is the same as saying that p has no factors
except 1 and p.

Prime numbers are a fundamental object in mathematics. One of the
early achievements in mathematics was Euclid’s proof that the number of
primes is infinite. Gauss was just one of the mathematicians who tried to find
patterns in the irregular jumps in the sequence of prime numbers. And even
today, prime numbers arise repeatedly in mathematics (Gödel’s incomplete-
ness proof) and computer science (trapdoor functions for cryptoggraphy).

A very old algorithm exists for constructing a list of prime numbers. This
method works quickly at first, but soon bogs down as the list increases in
length. We will use this algorithm to consider the problem of load balancing.
In parallel computing, an unbalanced problem consists of a number of tasks,
some of which are much more time consuming than others. If an unbalanced
problem is divided up naively among the available workers, it is possible that
one unlucky worker gets all the work, while the others finish quickly and then
are idle.

Unfortunately, the simplicity of the parfor command also implies that
when things go wrong, it may not be easy for the user to think of an al-
ternative approach. In our example, we will be able to predict the problem
in advance (big numbers take longer to check), and we can even think of a
way to “fool” parfor into a more balanced work division (but that’s only
because we can guess how it likes to divide the work.) For a more compli-
cated problem that is unbalanced, the parfor command might not be the
right tool.

So one purpose of this chapter is to present a simple example of bad load
balancing, show how it might be detected, and then to raise the possibility
that the proper treatment for a balancing problem may require moving to
some of the other, more flexible, parallel tools that MATLAB makes avail-
able.

4.2 The Sieve of Eratosthenes

If we wish to determine a list of all the primes from 2 to n, the simplest
approach is known as the “sieve of Eratosthenes”. We create n boxes, each

23

representing a number. Then we cross out 1, because 1’s technically not a
prime. Since 2’s not crossed out, that’s our first prime, but we now cross
out the numbers divisible by 2, namely 4, 6, 8, and so on. We move on to
3, which is not crossed out, so it’s prime, but we now cross out 6, 9, 12, and
so on. When we get to 4, it’s crossed out, so we move on to 5, and so on.
At the end, the boxes not crossed out represent primes. Computationally,
we could create a logical array prime(1:n), and then use the following loop
(which is actually an implicit double loop):

1 function primes = pr ime s i ev e (n)
2 %% pr ime s i e ve .m
3 %
4 prime = ones (n , 1) ;
5 prime (1) = 0 ;
6 for i = 2 : n
7 i f (prime (i))
8 prime (2∗ i : i : n) = 0 ;
9 end

10 end
11 %
12 % The primes index the nonzero e n t r i e s o f prime () .
13 %
14 primes = find (prime) ;

Another way to compute the prime() array is to consider each number
i and check all its divisors:

1 function primes = prime hunt (n)
2 %% prime hunt .m
3 %
4 prime = ones (n , 1) ;
5 prime (1) = 0 ;
6 for i = 2 : n
7 for j = 2 : i − 1
8 i f (mod (i , j) == 0)
9 prime (i) = 0 ;

10 break ;
11 end
12 end
13 end
14 primes = find (prime) ;

Although both algorithms produce the same result, notice that in the
second procedure, the value of prime(i) is determined once and for all on
iteration i. In parallel programming, rapid and simple access to data can be

24

as important as computational aspects. Imagine several workers executing
the loop for distinct values of i simultaneously. In the first procedure, it’s
possible that two workers will want to update the same entry of prime() at
the same time, while in the second procedure this can never happen.

If we try to make a parallel version of the prime sieve() function with a
parfor statement, MATLAB complains immediately: “Error: File: prime sieve.m
The variable prime in a parfor cannot be classified.” This message arises be-
cause one of the prerequisites for using the parfor command is that the output
variable if it is an array, must be “sliced”. That is, essentially, that MATLAB
must be able to divide the prime() array into pieces uniquely associated with
loop iterations. In this case, we would need for prime(i) to be modified by
loop iteration i and no other. But that’s precisely what the sieve algorithm
cannot do, and so, at least in this form, it is not suitable for parallelization
with parfor.

On the other hand, the prime hunt algorithm carries out the same proce-
dures, but in such a way that prime(i) is modified exactly by loop iteration
i and no other. This matches the way parfor wants to work, and so for the
remainder of this discussion, we will be working with that version of the al-
gorithm. It should be emphasized, though, that when working with arrays
and other indexed data structures, the parfor statement has some strict re-
quirements on the way data is accessed. Even though the user may feel that
a computation is perfectly parallelizable, these additional constraints must
be satisfied or MATLAB will refuse to execute the code.

4.3 The Work Grows With N

Since we’re going to be looking at large values of n, we really don’t want
to actually see a huge list of prime numbers. To make sure our program is
actually working though, our modified function, called prime total fun(), will
print the total number of primes it finds.

Another modification you will notice is that the loop going from 2 to
i − 1 now goes from 2 to

√
(n). This is purely a practical matter; the old

program’s work increases like n2 and as we start looking at numbers as large
as 1,000,000 the program can become painfully slow. Lowering the inner loop
limit means getting to 1,000,000 is about 1,000 times faster than before!

1 function t o t a l = prime hunt2 (n)
2 %% prime hunt2 .m

25

3 %
4 % Modif ied ve r s i on o f prime hunt .
5 %
6 t o t a l = 0 ;
7 pa r f o r i = 2 : n
8 prime = 1 ;
9 for j = 2 : i − 1

10 i f (mod (i , j) == 0)
11 prime = 0 ;
12 break
13 end
14 end
15 t o t a l = t o t a l + prime ;
16 end

Our plan is to let n increase, compute the elapsed time for each com-
putation, and try to understand how the work is growing with n. We can
do this by calling the sequential version of the prime hunt total code for an
increasing sequence of upper limits n. When we plot the timing data, we see
a rise that suggests a quadratic growth in time (and presumably work) with
n. A little thought makes this fact plausible. The work of loop iteration i
involves checking all i−2 potential factors. So testing the numbers 2 through
n means checking 0 + 1 + 2 + ...+ (n− 3) + (n− 2) factors. The total number
of factors checked is the sum of the integers from 0 to n− 2, whose value is
1
2
(n− 2)(n− 1) which means the work is growing roughly as n2.

The quadratic growth in work with increasing n will have several impli-
cations.

4.4 Counting Primes in Parallel

The first implication of the quadratic growth in work is that over a relatively
tight range in n we can generate problems that have a small or a heavy
workload. We expect that the bigger problems will show parallelism to the
most advantage. So now we will try to set up a parallel code, run it over
a range of input parameters n and workers w, and see if we can exhibit a
performance improvement of the kind we expect.

Let’s state some of our automatic assumptions:

• We’ll guess that, for small n, the sequential code is faster. (although
we don’t exactly know yet what “small” will mean!);

26

Figure 4.2: Computing primes from 1 to N gets quadratically harder

• We’ll guess that using 1 worker in parallel is almost the same as using
no workers, sequentially.

• We’ll guess that, as the number of workers increases, the time goes
down in a simple way. Two workers, twice as fast, ten workers, ten
times as fast.

1 function t o t a l = p r ime t o t a l f un (n)
2 %% pr ime t o t a l f u n .m
3 %
4 % Pa r a l l e l v e r s i on o f prime hunt2 wi th reduced inner loop l im i t

.
5 %
6 t o t a l = 0 ;
7 pa r f o r i = 2 : n
8 prime = 1 ;
9 pa r f o r j = 2 : sqrt (i)

10 i f (mod (i , j) == 0)
11 prime = 0 ;
12 break
13 end
14 end
15 t o t a l = t o t a l + prime ;

27

16 end

28

Chapter 5

HAILSTONE WITH PARFOR

Figure 5.1: Collatz sequence for 27

5.1 Introduction

Pick a number. If it’s even, divide it by two, but if it’s odd, triple it and add
1. If you repeat the process, you get a sequence of numbers which seem to pop
up and plummet down unpredictably, the way a hailstone forms by repeatedly

29

rising and falling within a thundercloud. For this reason, the numbers are
sometimes called the “hailstone sequence”, as well as the “3n+1” or “Collatz
sequence”, and they have been a subject of interest to mathematicians and
computational scientists for years.

If we start with 7, for instance, we will compute the sequence

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, . . .

which begins to cycle when it reaches 1. Although this process seems to reach
1 no matter what starting point is used, this is still an open question known
as the Collatz conjecture. We’ll assume the sequence always terminates at
1. For a given starting value n, then, two natural quantities of interest are
l(n), the length of the sequence, and h(n), the “height” or maximum value,
occurring in the sequence.

Figure 5.2: Collatz sequence lengths for 1 to 50

5.2 Computing the Length and Height

It’s remarkably hard to tell in advance whether the Collatz sequence of a
number will reach 1 quickly or not. Thus, if we start with 27, we end up

30

taking 111 steps before reaching 1, whereas starting at 26 and 28 take 11 and
19 steps respectively. It’s easy to write a program that can compute l(n) for
any value of n we choose:

1 function l = c o l l a t z l e n g t h (n)
2 %% c o l l a t z l e n g t h .m
3 %
4 l = 1 ;
5 while (n ˜= 1)
6 i f (n % 2 == 0)
7 n = n / 2 ;
8 else
9 n = 3 ∗ n + 1 ;

10 end
11 l = l + 1 ;
12 end

1 function h = c o l l a t z h e i g h t (n)
2 %% c o l l a t z h e i g h t .m
3 %
4 h = n ;
5 while (n ˜= 1)
6 i f (n % 2 == 0)
7 n = n / 2 ;
8 else
9 n = 3 ∗ n + 1 ;

10 end
11 h = max (h , n) ;
12 end

31

Chapter 6

THE MOLECULAR
DYNAMICS PROBLEM

Figure 6.1: Particles with Momentum and Weak Attraction

32

6.1 Introduction

A great deal is known about the structure and behavior of atoms and molecules,
as long as we consider them one at a time. Some properties of a material can
be explained directly by corresponding features that can be noticed in a single
atom. But there are other phenomena, such as phase transitions, the for-
mation of surfaces, the effect of catalysts, and various mixing effects, whose
understanding can only arise from considering large groups of molecules hav-
ing a typical range of energies, and interacting by collisions and forces of
attraction or repulsion.

The field of molecular dynamics provides a simulated laboratory for such
studies. Instead of atoms or molecules, we consider a collection of abstract
particles, which don’t react chemically. We think of them as point masses
which move though space, driven by their momentum. A pair of particles
exert a mutual repulsive force when close, and a weaker attractive force when
further apart.

A computation might involve hundreds of thousands of particles. The
strategy requires creating a series of “snapshots” of the particle positions over
time. However, to achieve accurate results over a time interval of interest,
a huge number of snapshots must be taken. To create the next snapshot
requires selecting each particle, measuring its distance to all other particles,
summing up the resultant forces, and then using Newton’s law to move the
particle a tiny distance. The same process must be carried out for each of
the particles before the snapshot can be completed. If we have n particles to
study, then we have roughly n2 pairs of molecular interactions to sum up on
a snapshot. Thus, a molecular dynamics code can provide a problem with
quadratic growth; as n increases, our problem quickly grows from difficult to
intractable. (For this very reason, sophisticated molecular dynamics codes
cut down the work by concentrating on the local molecular interactions, while
approximating the weaker effect of far away molecules.)

Packages for doing heavy duty molecular dynamics simulation include
AMBER, CHARMM, DL POLY, Gromacs, and NAMD.

6.2 The Calculation

Suppose that we have n particles, and that at some starting time t0 we
are given, for each particle i, its mass mi, and the initial position, velocity,

33

and acceleration vectors pi(t), vi(t), ai(t). Our goal is to model the behavior
of the particles up to some final time t∗ by measuring the forces on the
particles, and allowing them to respond over a short time step. If our steps
are small enough and our approximation scheme accurate, then we can get
reliable estimates of the behavior of the particle system over the time range
of interest.

In order to determine what is going to happen at time step t + dt, we
need to compute the force vector f . In the molecular dynamics model, the
force on particle i is the sum of the individual forces exerted by all the other
particles in the system. The force fi,j exerted on particle i by particle j
depends only on the distance di,j = ||pi− pj|| between the two particles, and
its value is fi,j = V ′(di,j), that is, the derivative of the potential function.
This step is carried out in the function compute new().

The potential function used in the md() program is the sine-squared po-
tential V (d) = sin2(min(d, π

2
)), which is completely zero beyond a distance

of π
2
, and attractive at closer range.

Figure 6.2: The sin2 Potential V(d) and Derivative V’(d)

(A more realistic potential function is known as the Lennard-Jones po-
tential. Particles repel each other when close because of the Pauli principle,
and attract at a distance because of the van der Waals force.)

Once the force vector f has been computed, it is possible to determine
the position, velocity and acceleration vectors for snapshot at time t + dt
using the values known at time t. One technique for doing this is known as

34

the Velocity Verlet algorithm:

p(t + dt) =p(t) + v(t)dt +
1

2
dt2

a(t + dt) =f(t)/m

v(t + dt) =v(t) +
1

2
(a(t) + a(t + dt))

This step is carried out in the function update().
Once the new position, velocity and acceleration have been computed, a

new snapshot is complete. The program can gather statistics from this new
data, such as the pressure, temperature, kinetic and potential energy, before
beginning the computation of the next step.

6.3 Estimating the Work

A typical run of our particular program might involve 1,000 particles for 500
time steps. This seems to mean that a million computations of some sort
will be involved, which suggests our program is not going to run in the blink
of an eye! In fact, if we are a little more careful, we can make a reasonable
estimate of how the work and time will grow with the values of np, the
number of particles, and step num the number of steps.

Assume we are using np particles, and taking stepnum time steps. The
basic calculation in the code computes the total force on one particle pi at
the k-th time. This requires summing up the individual force from each
particle pj. If it costs c units of work to calculate an individual force, then
it will cost (np − 1) ∗ c units to get the total force on particle pi, and thus
np∗ (np−1)∗ c ≈ np2 ∗ c units to compute the total force on all the particles,
at the k-th time. To do this for each time step will cost us a total work of
about step num ∗ np2 units. This means that the problem is linear in time
steps, but quadratic in the number of particles. You should be warned that
problem work depends quadratically on a parameter, that the work can very
quickly explode beyond your computer’s capacity.

If we really believe that the work is linear in time, then we can estimate
the work involved in a 1,000 particle and 500 timestep run by using tic and
toc to time 1 step of a 1,000 particle run, and multiplying by 500. While
we’re at it, we can do this experiment for a range of particle sizes as well.

35

NP 1 step time 500 step estimate 1,000 step estimate
1,000 1s 8m 17m
2,000 4s 33m 1h 6m
4,000 14s 1h 57m 3h 53m
8,000 58s 8h 3m 16h 6m

16,000 3m 51s 1d 8h 2d 16h
Our estimates are a warning that this program can eat up a lot of time,

especially if we try to increase the particle size. This suggests that it would
be worth our trouble to try to rewrite the code in a way that speeds it up.
It’s hard to be certain about what to try; before changing our code, the next
thing we should do is find out what lines of code are being used the most.
This is where our work is being done, and this is where we should concentrate
our efforts.

Typical calculations with a production molecular dynamics code might in-
volve 20,000 to 3,000,000 particles and take 10,000 to 50,000 time steps!
The problem of controlling the computational cost becomes so serious that
special algorithms have been developed to cut down on the quadratic cost of
the particle count parameter.

6.4 Profiling the Sequential Code

The molecular dynamics calculation that we are using as an example is unlike
most of the other example programs we have encountered so far. It’s longer,
made up of multiple functions, and involves loops that look complicated.
That’s why it is not easy to point to any particular line of the program and
assume that speeding up that line will speed up the entire program. We often
aren’t able to form a realistic assessment of the importance of the individual
portions of our code.

In practice, however, it is often the case that, when a large problem is
being solve, most of the computational work occurs in just a few program
locations; If we can locate those locations, and try to improve their operation,
we can achieve a huge improvement in performance. And, conversely, it is
often the case that programmers waste time optimizing a portion of their
program that contributes almost nothing to the overall cost. Since we only
have a certain amount of time to spend modifying and testing the code,
it is wise to identify those sections containing most of the work, and then
concentrate on them alone.

36

Thus, we propose to run the program sequentially, using a realistic prob-
lem size, and try to spot the busiest loops, where optimization might help.
Fortunately, MATLAB comes with a very useful tool for this purpose, the
program profiler. To use the program profiler for the md program, we simply
type the following three commands:

1 p r o f i l e on
2 md
3 p r o f i l e v iewer

When the program is complete, the command profile viewer opens up a
report on the program which lists the functions that were called (both user
and internal MATLAB functions), the number of times called, the total time
spent in the function or its subfunctions, and the “self time” spent precisely
in that function itself.

Now it’s normal for the program to take somewhat longer to run if the
profiler is on, because When the profiler is turned on, MATLAB is doing
more work that just executing your program; it also keeps track of which
statement is begin carried out, and how long it took. Typically, this adds
a noticeable amount of time to the original running time. However, there’s
something about the md program that makes the profiled version much,
much slower. Running with 1,000 particles and 100 steps, the program took
about 90 seconds to run, but with the profiler turned on, the program used
more than 5,000 seconds. This is surprising, but it’s actually an indirect
indication that there’s something wrong with the program. We won’t try
to explain the time discrepancy further, and will concentrate on the report
itself.

Figure 6.3: A portion of the profile report for md

37

Figure 6.3 displays the initial part of the profile report for the md pro-
gram, and indeed md shows up on the first line, called once (when we invoked
it from the command line), and with a total time equal to the the program
running time. However, the self time is negligible - that is, as soon as we call
md, md is calling other functions, and that is where the work is really going
on.

Moving to the second line of the report, we see the item md>compute,
meaning that we are reporting on time spent in the compute function, called
by md. This is called 101 times (once for start up, and once for each of 100
steps). The total time is again very large, but now notice that the self time is
about the same. In other words, we’ve found where the work is actually being
carried out. Although md includes functions initialize() and update(), the
report indicates that their contribution to the total cost is negligible.

Clearly, our concern should focus on bfcompute(). Fortunately, the pro-
filer can give us more detailed information of what is going on in that func-
tion. We simply click on the md>compute line of the report, and we are
transferred to a document that analyzes the compute() function in greater
detail (Figure 6.4).

Figure 6.4: A portion of the profile report for md>compute

Now we see individual lines of the code labeled with the number of times
they were called, and their contributions to the overall time. From this
report, it is clear that 50% of the total program time is spent executing 5
lines of code (really just 3 lines, since the other two lines are end statements).

1 f = zeros (nd , np) ;
2 pot = 0 . 0 ;

38

3 for i = 1 : np
4 for j = 1 : np
5 i f (i ˜= j)
6 for k = 1 : nd
7 r i j (k) = pos (k , i) − pos (k , j) ;
8 end
9 d = 0 . 0 ;

10 for k = 1 : nd
11 d = d + r i j (k) ˆ2 ;
12 end
13 d = sqrt (d) ;
14 d2 = min (d , pi / 2 .0) ;
15 pot = pot + 0 .5 ∗ sin (d2) ∗ sin (d2) ;
16 for k = 1 : nd
17 f (k , i) = f (k , i) − r i j (k) ∗ sin (2 . 0 ∗ d2) / d ;
18 end
19 end
20 end
21 end
22 kin = 0 . 0 ;
23 for k = 1 : nd
24 for j = 1 : np
25 kin = kin + ve l (k , j) ˆ2 ;
26 end
27 end
28 kin = 0 .5 ∗ mass ∗ kin ;

At this point, we need to get advice from someone familiar with MATLAB
optimization about whether we can improve the function. However, you
should be aware that MATLAB is not efficient when asked to carry out for
loops that don’t actually contain a lot of work, and are called many times.
If possible, such loops should be replaced by equivalent vector operations,
which MATLAB can execute much more quickly.

On the advice of an experienced MATLAB code, the compute() function
was revised. The new function was called compute new(), and it was put
inside a new program called md new(). The core of the new function is
dramatically changed:

1 f = zeros (nd , np) ;
2 pot = 0 . 0 ;
3 p i2 = pi / 2 . 0 ;
4 for i = 1 : np
5 Ri = pos − repmat (pos (: , i) , 1 , np) ;
6 D = sqrt (sum (Ri . ˆ2)) ;

39

7 Ri = Ri (: , (D > 0 .0)) ;
8 D = D(D > 0 .0) ;
9 D2 = D .∗ (D <= pi2) + pi2 ∗ (D > pi2) ;

10 pot = pot + 0 .5 ∗ sum (sin (D2) . ˆ2) ;
11 f (: , i) = Ri ∗ (sin (2∗D2) . / D) ’ ;
12 end
13 kin = 0 .5 ∗ mass ∗ sum (diag (ve l ’ ∗ ve l)) ;

Now let us redo the simple timing estimate with the revised code to see
if the changes had any effect:

NP 1 step time 500 step estimate 1,000 step estimate
1,000 1/5s 1m40 3m 20s
2,000 2/3s 5m33 11m 6s
4,000 2s 16m 40s 33m 20s
8,000 8s 1h 6m 2h 13m

16,000 38s 5h 16m 10h 33m
After seriously reworking the code, we’ve managed to get it to run about

4 times faster on the larger problems. In one sense, this is wonderful. In an-
other sense, it’s unfortunate because after working so hard on the compute
function, it’s really hard to see how we can squeeze out any more speed, short
of rethinking the algorithm.

6.5 Performance of the Parallel Code

If we want to run bigger problems, or get our results faster, then the natural
thing to consider is to carry out the calculations in parallel. If we run the
profiler on the revised md new, we will still observe that the compute new
function accounts for almost all the work. Luckily, the work is contained
inside a for loop that carries out the force calculation for each particle.
These force calculations are independent. This means we can set up a parallel
version of the program quite simply.

1 f = zeros (nd , np) ;
2 pot = 0 . 0 ;
3 p i2 = pi / 2 . 0 ;
4 pa r f o r i = 1 : np
5 Ri = pos − repmat (pos (: , i) , 1 , np) ;
6 D = sqrt (sum (Ri . ˆ2)) ;
7 Ri = Ri (: , (D > 0 .0)) ;
8 D = D(D > 0 .0) ;
9 D2 = D .∗ (D <= pi2) + pi2 ∗ (D > pi2) ;

40

10 pot = pot + 0 .5 ∗ sum (sin (D2) . ˆ2) ;
11 f (: , i) = Ri ∗ (sin (2∗D2) . / D) ’ ;
12 end
13 kin = 0 .5 ∗ mass ∗ sum (diag (ve l ’ ∗ ve l)) ;

If this code will execute in parallel, then if we decide to run a bigger,
longer job, we

41

Chapter 7

TIME, WORK, RATE

Figure 7.1: Distance / Time = Rate

7.1 Introduction

We use a computer because we want an answer. We use parallel programming
because we want that answer faster. So we have to assume we already know
how to compute the answer, and we are looking for ways to speed up the
computation. There are many things we can try, but we need to have a
reliable method of measuring whether a revised program really does run
faster. This means we need to be understand how to measure computational
work, time, and rate.

42

7.2 Absolute Computational Work

When Charles Babbage was designing his Analytical Engine in 1837, he used
the word “mill” to describe the part of the machine that carried out opera-
tions on numbers. Even today, it is sometimes useful to think of a computer
as a kind of machine that takes a bucket of raw numbers as input, carries out
some kind of work on them, and produces a bucket of output numbers. We
can actually take this simplified model and make some rough approximations
of the amount of work involved.

As long as we’re ruthlessly simplifying, we’ll assume that we’re only deal-
ing with a floating point numbers, and that the task we have to carry out
can always be arranged so that it involves nothing more than the four basic
arithmetic operations of addition/subtraction, and multiplication/division.
The amount of work, called the operation count can then be determined by
looking at the code and counting the floating point operations.

To get an example of such an operation, consider the process of Gauss
elimination when applied to a matrix. On step k, we determine the pivot
row, move it into the k-th row of the matrix, and then add a multiple of row k
to each row i from k +1 to n in such a way that we zero out the entry a(i, k).
This is an example of a “saxpy” operation, symbolized by x ← x + s ∗ y,
where we multiply a vector y by a scalar s and add it to a vector x.

MATLAB allows us to write the code for such an operation in the compact
form

1 x = x + s ∗ y ;

but for clarity, let’s write it out:

1 for i = 1 : n
2 x (i) = x (i) + s ∗ y (i) ;
3 end

We see that the operation count for the saxpy operation is 2n.
Similarly, it is not difficult to see that the operation count for a dot

product of two vectors is also 2n, while multiplying an m×n matrix A times
an n-vector x is 2mn. Counting the work in Gaussian elimination is more
difficult because at each step, the length and number of the vectors involved
decreases; the operation count is on the order of 2n3

3
+ 3n2

2
− 7n

6
and the value

2n3

3
is generally an acceptable estimate.

43

7.3 Wallclock and Processor Times

We use parallel programming because it has the potential to get our results
faster. If we’re running a program interactively, then we might be able to
guess when a program runs faster; for a better measurement, we could look at
a clock. However, since computers can do billions of operations in one second,
we’ll really need a more accurate and automatic procedure for measuring time
if we want to judge performance rates.

We know that a computer has an internal clock that controls the pace of
operations. We’ll make the assumption that each “tick” of the computer’s
clock measures a time period during which one operation can be carried out.
To measure the amount of (human) time that elapse during a computation,
the computer can simply count the number of ticks between the start and
finish, and multiply by a conversion value that records the length of a single
tick in seconds. This measurement is called the wallclock time, because it
represents a very accurate value for time elapsed from the start to finish of
our program, and it’s the quantity that we hope to reduce by converting to
parallel programming.

You may have heard of another time measurement that can be used in
computing, which was once called CPU time, or now, processor time. To
explain this, we must first mention that a computer is typically running
many programs, not just your MATLAB job. If the computer has a single
processor, then it is responsible for executing all these programs. It does
this by a sort of time sharing, in which each program is brought into the
processor, executed for a fixed slice of time, then temporarily frozen so that
the next program can be brought in. Under such a system, it would be unwise
to use the wallclock time to measure performance, since the program we are
interested in would actually only have been executing for a portion of that
time. Hence, methods were developed that allowed a program to request a
separate report that only counted the time during which the program was
actually being run by the processor.

Even in the old days, if you were running a large computation, the differ-
ence between wallclock and CPU time was usually not outrageous; moreover,
as long as you were running on a desktop computer that you controlled, you
could make sure to turn off as many other unnecessary programs as you
could, so that the processor could focus on the program of interest.

Now, when we are trying to compare sequential and parallel programs,
the CPU time is of much less interest. In fact, we’d expect that the parallel

44

program would always run up at least as much processor time as the sequen-
tial program, since it’s doing the same work. We’re far more interested in
whether or not that work was completed in a shorter time interval, because
it was properly divided up among several processors.

7.4 Measuring Time

MATLAB includes the tic and toc functions which set a starting time and
then return the time elapsed since that point:

1 t ic ;
2
3 combinat ion lock
4
5 e l apsed t ime = toc ;

The same command can be used in parallel. The matlabpool command
itself can take some time. Typically, we want to ignore that, and focus on
the parallel computation, so the timing calls should go inside the calls to
matlabpool:

1 matlabpool open l o c a l 4
2
3 t ic ;
4
5 c omb i n a t i o n l o c k pa r a l l e l
6
7 e l apsed t ime = toc ;
8
9 matlabpool close

The value returned by toc is measured in seconds, and has an accuracy that
can be as good as one-millionth of a second; this varies from one computer
system to another, and you can find out your computer’s resolution using
the following simple program:

1 t ic ;
2 e l ap s ed t ime = toc ;
3 fpr intf (1 , ’The t i c / toc r e s o l u t i o n on t h i s computer i s %g\n ’

, e l aps ed t ime) ;
4 fpr intf (1 , ’The number o f t i c / toc t i c k s i s about %d\n ’ , 1 /

e l apsed t ime) ;

45

7.5 A Test Drive on Your Computer

If I look up the specifications for my computer, I find out that I have a 2.8GHz
Quad-Core processor. This means I have four processors (that’s good, I can
do parallel processing), and that each processor runs with a clock speed of
R = 2.8 GigaHertz, that is, it “ticks” 2.8 billion times a second.

When I run the tick tock resolution.m code on this computer, I get
a tic/toc resolution of about 1.4 millionths of a second, and about 680,000
tic/toc ticks per second; in other words, tic/toc is pretty good, but the
shortest event it can measure lasts 4 ticks on my computer’s clock. Since we
will usually be interested in measure large computations with thousands or
millions of operations, tic and toc will be accurate enough for us.

Now let’s assume that I am running a sequential MATLAB program,
and that the amount of work involved is w floating point operations. If
the processor could really do exactly one operation per clock tick, and it
had nothing to do but my explicit instructions, then it will be interesting

to compute the computational rate r =
w (floating point operations)

s (seconds)
and

compare it to R.

1 %% do t p roduc t t im ing
2 x = rand (n , 1) ;
3 y = rand (n , 1) ;
4
5 t ic ;
6 z = 0 . 0 ;
7 for i = 1 : n
8 z = z + x(i) ∗ y (i) ;
9 end

10 t = toc ;
11
12 r = (2 ∗ n) / t ;
13 R = 2800000000;
14 fpr intf (1 , ’%d %g %g\n ’ , n , r , R) ;

Our script leaves the value n as a variable. We will run the script for
values of n that are powers of 2, from 20 to 225, and keep track of the results.
Once the problem size n gets big enough, the plot for the computational
time seems to follow a reasonable linear pattern, which suggests that the
time measurements made by tic and toc are properly related to the work
being carried out.

When we plot the computational rate, we see a “ramping up” effect; that

46

Figure 7.2: Computational Time for the Dot Product

is, over a significant initial range of values of n, the rate rises somewhat
steeply, and then levels off to a plateau, at which we might assume the
computation is proceeding at its maximum possible rate.

7.6 Relative Computational Work

Unlike the dot product, most computations are not simple enough that we
can essentially estimate the number of floating point operations. This could
be because the computation is complicated, involves many conditional state-
ments, or invokes special functions whose evaluation requires an iteration of
an unspecified number of steps. Estimating the number of floating point op-
erations allows us to measure whether we are using the computer efficiently;
but even if we can’t do that, we can still using the idea of timing our code
to be able to judge whether one algorithm is faster than another, or how
rapidly the work must be growing as the problem size increases. In this case,
we are using the idea of relative comparison. We don’t know how long it
takes to evaluate the sine function once, but we can expect that it takes ten
times longer to evaluate 10 sine functions. And we might compare the speed

47

Figure 7.3: Computational Rate for the Dot Product

of evaluation of the sine function using MATLAB’s built-in sin() function to
the speed where we used a Taylor series.

Suppose we need to fill an array a(,) with products of sines and exponen-
tials, according to the following scheme:

1 function a = s in exp1 (m, n)
2 %% sin exp1 .m
3 a = zeros (m, n) ;
4 for i = 1 : m
5 for j = 1 : n
6 a (i , j) = sin (i ∗ pi / m) ∗ exp (j ∗ pi / n) ;
7 end
8 end

We don’t know how long this process will take, and it will certainly depend
on the values m and n. However, we may realize that the evaluation of sin()
and exp() are expensive operations, and we notice that we’re calling these
expensive functions a lot, mn times in fact. Since we really only need to
know the values of m sines and n exponentials, we could precompute them
in vectors u and v, and then hope to save time, at least if the problem size
is large.

48

Figure 7.4: Comparison of Dot Product Rate to Maximum

1 function a = s in exp2 (m, n)
2 %% sin exp2 .m
3 u = zeros (m, 1) ;
4 for i = 1 : m
5 u(i) = sin (i ∗ pi / m) ;
6 end
7 v = zeros (n , 1) ;
8 for j = 1 : n
9 v (j) = exp (j ∗ pi / n) ;

10 end
11 for i = 1 : m
12 for j = 1 : n
13 a (i , j) = u(i) ∗ v (j) ;
14 end
15 end

Looking more carefully at the calculation of the result a(,), we might
notice that it has the form of a vector “outer product”, that is, the product
of two vectors that creates an array as the result. MATLAB knows about
outer products just like it knows about inner products, and can evaluate

49

them rapidly. So we might try to speed up our calculation by writing it in
the language of vectors:

1 function a = s in exp3 (m, n)
2 %% sin exp3 .m
3 u = sin ((1 : m) ∗ pi / m) ;
4 v = exp ((1 : n) ∗ pi / n) ;
5 a = u ’ ∗ v ;

We know how to time these calculations:

1 nv = zeros (12 , 1) ;
2 t1 = zeros (12 , 1) ;
3 t2 = zeros (12 , 1) ;
4 t3 = zeros (12 , 1) ;
5 m = 1000 ;
6 n = 1 ;
7 for j = 1 : 12
8 nv (j) = n ;
9 t ic

10 a = s in exp1 (m, n) ;
11 t1 (j) = toc ;
12 t ic
13 b = s in exp2 (m, n) ;
14 t2 (j) = toc ;
15 t ic
16 c = s in exp3 (m, n) ;
17 t3 (j) = toc ;
18 n = n ∗ 2 ;
19 end

For this study, the value of n doubles at each successive measurement
point. That suggests that if we plot the data, we should use a logarithmic
scale for n; otherwise, much of the data will be bunched up on the left hand
side and less visible.

Now the actual times are not of interest to us. It means much more to be
able to say that algorithm 3 took twice or a tenth as much time as algorithm
1. Assuming that algorithm 1 is our base for comparison, we can make a plot
of the ratio between the time a given algorithm took and the time algorithm
1 required, which is a relative time comparison.

Although the relative time plot is easier to understand, it’s hard to avoid
the psychological reaction that the graph rising the highest represents the
best result. But we can avoid that misinterpretation by plotting the relative
rate or speed rather than time; that is, we plot the time algorithm 1 required

50

Figure 7.5: Absolute Time Comparison for Three Equivalent Algorithms

divided by the time the given algorithm required. Notice that, at least for
this example, our decision to display relative speeds means that the results
for algorithm 3 (the winner in this particular competition) are shown with
greater detail, whereas the slower algorithm is much less prominent.

Recall that the computation rate was defined by r = w/t, where w was
the work, and t the time. We ran algorithms 1, 2, and 3 and got timings t1,
t2 and t3, but we weren’t able to estimate w, so we can’t compute a true
(absolute) rate. However, the relative speed is the ratio of the rates, and in
that case, w is a common factor, and drops out, so it doesn’t matter if we
don’t actually know its value:

r3

r1
=

w/t3

w/t1
=

t1

t3

which justifies our natural assumption that, when judging speeds, even if we
can’t say whether either of two programs is actually fast, we should always
prefer the one that is faster than the other!

51

Figure 7.6: Relative Time Comparison for Three Equivalent Algorithms

Figure 7.7: Relative Speed Comparison for Three Equivalent Algorithms

52

Chapter 8

RULES OF THE (PARFOR)
ROAD

Figure 8.1: Some Do’s and Don’ts

8.1 Introduction

In Chapter 1 we saw a code that repeated a calculation sequence many times;
splitting the work over several processors was straight forward. In the present
Chapter we discuss the rules under which such work-sharing is permissible
in Matlab.

Many computer languages provide a for (or do) loop to designate a block
of code (the loop-body) for repeated execution. In Matlab a for loop

53

No. Limitation
1 the range of a parfor must be increasing, consecutive integers
2 the results must not depend on the order of execution
3 restrictions on allowable statements in the loop-body

Table 8.1: Restrictions on parfor loops

requires an explicit counter or loop-index. The range of the loop can be a
2D array, in which case the loop index successively takes the values of the
columns of the array. If the range is a 1D array, the loop values are scalars.

The Parallel Computing Toolbox provides a parfor loop (parallel for loop)
that evaluates the loop-body statements in parallel on separate workers.
These workers could be on your multi-core machine or on a cluster. The
workers are anonymous in the sense that the base code can not explicitly
communicate with the workers, nor can the workers communicate with each
other. Most importantly, the order in which the loop-body is executed is not
known.

8.2 The basics

Clearly, not all for loops can be converted to parfor. The implementation
provided by the Parallel Computing Toolbox imposes limitations on loops
eligible for parfor (see Table 8.1).

Whereas the limitation on the range of the loop-index is easily under-
stood, the consequences of the (unknowable) execution order may be more
subtle. Since there is no way to know the order in which the loop-index values
occur, there’s no way to know its final value. Thus, after exiting a parfor
loop, the value of the loop-index is not defined. Additionally, in a sequen-
tial for loop the loop-body can control the actual execution through logical
tests with break and/or continue statements. The statements break and
continue can not appear in the loop-body of a parfor loop. To explain the
3rd limitation, it’s necessary to classify the variables in a parfor loop-body
(see Table 8.2).

54

Classification Description

Loop-index Scalar integer
Sliced An array whose segments are defined and/or appear in expression

in the loop-body
Broadcast Defined before the loop and used in expressions in the loop-body
Reduction Accumulates a value over iterations of the loop-body,

independent of iteration order
Temporary Created in the loop-body, but not defined after exiting the loop;

the variable is cleared after every loop iteration

Table 8.2: Classification of parfor loop-variables

As an introduction to this classification, consider the code displayed in List-
ing 8.1.

1 %%Parfor 01
2 % based on example in PCT User ’ s Guide
3
4 a = 0 ;
5 c = pi ; % broadcas t
6 z = 0 ; % reduc t ion
7 r = rand (1 , 10) ; % s l i c e d input
8
9 pa r f o r i i = 1 :10 % i i i s the loop−index ,

10 % 1:10 i s the range
11
12 a = i i ; % temporary , not the p r e v i o u s l y de f ined ‘a ’
13
14 i f i i < c
15 d = 2∗a ; % ‘d ’ i s temporary
16 else
17 d = 0 ;
18 end
19
20 z = z +d∗ i i ; % reduc t ion
21
22 b(i i) = r (i i) ;% s l i c e d output
23
24
25 end

Listing 8.1: Classification of variables

55

The variable a outside the loop is not related to the a inside the loop. The
later is a temporary variable; it is assigned inside the loop and its scope is
limited to the loop-body. It’s bad practice to re-use the symbol and rely
on the scoping rules. For one thing, changing parfor to for changes the
behavior. The variable z is a reduction, based on the fact that the addition
operation is both commutative and associative. r is a sliced input array; only
the necessary elements are sent from the client to each worker. b is a sliced
output variable; the results are sent from the workers and accumulated on
the client.

8.3 More on the classification

Computer cycles associated with communication between the client and the
workers can impose a significant computational burden on the use of parfor.
The notion of sliced variables offers a mechanism for efficiency; only a portion
of each sliced variable has to be sent between the client and a worker. To ease
the work of deciding what information must be communicated the Matlab
developers have imposed limitations on sliced variables. These limitations
can lead to great frustration for users (including the authors !).

8.3.1 sliced variables

Recall that in Matlab an object can be indexed in three ways:

1. by name in a structure , e.g. A.var 1,

2. by braces in a cell, e.g. A{ 1 },
3. by parentheses in an array, e.g. A(1).

A variable in the loop-body is sliced if and only if it has all of the following
characteristics:

• The first-level of indexing is either parentheses, (), or braces, { } .

• Within the first-level index, the list of indices is the same for all occur-
rences of the variable.

• In the list of indices for a sliced variable, precisely one index involves
the loop-index, and this index must be one for the following forms:
{ii, ii+k, ii−k, k+ii, k−ii} where ii is the loop-index, and k is either
a scalar integer, or a scalar broadcast variable, or a colon or end.

56

• The right-hand side assignment does not change the shape of the vari-
able (, e.g. no [], or ‘ ’ which delete elements, or (end+1) which
inserts an element.

8.3.2 broadcast variables

A broadcast variable is any variable other than the loop-index or a sliced
variable that is not the object of an assignment in the loop-body. Before the
loop is initiated all broadcast variables are sent to the workers. Clearly, one
should be judicious in the use of such variables.

8.3.3 reduction variables

Loop independence as defined in item-2 of Table 8.1 requires that the results
of a parfor-loop be independent of the loop execution order. One could
impose a stronger notion; namely, that each pass through the loop is inde-
pendent of the others. Such a strong limitation would rule out many useful
cases. For example, the variable z on line 20 of Listing 8.1 appears both in
an assignment, and in an expression (on the right side of an assignment). In
a for loop the initial value (on line 6, z = 0) is set and the resulting sum is
accumulated. In a parfor loop the value z = 0 outside the loop is not sent
to any worker. Each worker accumulates its partial sum; these are sent to
the client where the final sum is accumulated. However, since real addition
is associative, the result from executing the loop is independent of the order.
Assignments of expressions that are associative is the defining characteristic
of a Reduction variable. The astute reader will note that floating point ad-
dition is not associative, so that results from for and parfor loops need not
be identical. Note that since the reduction variable only assumes a for-loop
consistent value at loop-exit, it can be used reliably only in the reduction
assignment statement.

To discuss reduction variables in more detail, it’s convenient to abstract
the replacement operation as a function evaluation, that is:

X = f(X, expr) or X = f(expr, X) .

On line 20 of Listing 8.1 we have f ∼ + and expr ∼ d ∗ ii, and in this
case f is commutative, so that each worker can have an arbitrary collection
of values for the loop-index, and the client can accumulate the results from

57

the workers in any order. The Matlab developers have included several
useful exceptions to the requirement that f be commutative. In a reduction
assignment the following built-in functions are permitted:

1. matrix multiplication X ∗ expr or expr ∗X

2. column concatenation in an array[X, expr] or [expr, X]

3. row concatenation in an array[X; expr] or [expr; X]

4. column concatenation in a cell {X, expr} or {expr, X}
5. row concatenation in a cell {X; expr} or {expr; X}.

Note that the result of cell concatenation will always be either a 1 × 2 or
a 2 × 1 cell array. Any user supplied function in a reduction operation is
assumed to be commutative.

8.3.4 temporary variables

A temporary variable is a variable that is the target of a non-indexed assign-
ment and is not a reduction variable. In Listing 8.1 the variables a (line 12)
and d (lines 15 & 17) are temporary variables.

8.4 Efficiency

58

